26 research outputs found

    Aesthetic appreciation: event-related field and time-frequency analyses

    Get PDF
    Improvements in neuroimaging methods have afforded significant advances in our knowledge of the cognitive and neural foundations of aesthetic appreciation. We used magnetoencephalography (MEG) to register brain activity while participants decided about the beauty of visual stimuli. The data were analyzed with event-related field (ERF) and Time-Frequency (TF) procedures. ERFs revealed no significant differences between brain activity related with stimuli rated as “beautiful” and “not beautiful.” TF analysis showed clear differences between both conditions 400 ms after stimulus onset. Oscillatory power was greater for stimuli rated as “beautiful” than those regarded as “not beautiful” in the four frequency bands (theta, alpha, beta, and gamma). These results are interpreted in the frame of synchronization studies

    Alterations in cortical thickness development in preterm-born individuals:Implications for high-order cognitive functions

    Get PDF
    AbstractVery preterm birth (gestational age <33weeks) is associated with alterations in cortical thickness and with neuropsychological/behavioural impairments. Here we studied cortical thickness in very preterm born individuals and controls in mid-adolescence (mean age 15years) and beginning of adulthood (mean age 20years), as well as longitudinal changes between the two time points. Using univariate approaches, we showed both increases and decreases in cortical thickness in very preterm born individuals compared to controls. Specifically (1) very preterm born adolescents displayed extensive areas of greater cortical thickness, especially in occipitotemporal and prefrontal cortices, differences which decreased substantially by early adulthood; (2) at both time points, very preterm-born participants showed smaller cortical thickness, especially in parahippocampal and insular regions. We then employed a multivariate approach (support vector machine) to study spatially discriminating features between the two groups, which achieved a mean accuracy of 86.5%. The spatially distributed regions in which cortical thickness best discriminated between the groups (top 5%) included temporal, occipitotemporal, parietal and prefrontal cortices. Within these spatially distributed regions (top 1%), longitudinal changes in cortical thickness in left temporal pole, right occipitotemporal gyrus and left superior parietal lobe were significantly associated with scores on language-based tests of executive function. These results describe alterations in cortical thickness development in preterm-born individuals in their second decade of life, with implications for high-order cognitive processing

    MEG spectral analysis in subtypes of mild cognitive impairment

    Get PDF
    Mild cognitive impairment (MCI) has been described as an intermediate stage between normal aging and dementia. Previous studies characterized the alterations of brain oscillatory activity at this stage, but little is known about the differences between single and multidomain amnestic MCI patients. In order to study the patterns of oscillatory magnetic activity in amnestic MCI subtypes, a total of 105 subjects underwent an eyes-closed resting-state magnetoencephalographic recording: 36 healthy controls, 33 amnestic single domain MCIs (a-sd-MCI), and 36 amnestic multidomain MCIs (a-md-MCI). Relative power values were calculated and compared among groups. Subsequently, relative power values were correlated with neuropsychological tests scores and hippocampal volumes. Both MCI groups showed an increase in relative power in lower frequency bands (delta and theta frequency ranges) and a decrease in power values in higher frequency bands (alpha and beta frequency ranges), as compared with the control group. More importantly, clear differences emerged from the comparison between the two amnestic MCI subtypes. The a-md-MCI group showed a significant power increase within delta and theta ranges and reduced relative power within alpha and beta ranges. Such pattern correlated with the neuropsychological performance, indicating that the a-md-MCI subtype is associated not only with a "slowing" of the spectrum but also with a poorer cognitive status. These results suggest that a-md-MCI patients are characterized by a brain activity profile that is closer to that observed in Alzheimer disease. Therefore, it might be hypothesized that the likelihood of conversion to dementia would be higher within this subtype

    Explicit processing of verbal and spatial features during letter-location binding modulates oscillatory activity of a fronto-parietal network.

    Get PDF
    The present study investigated the binding of verbal and spatial features in immediate memory. In a recent study, we demonstrated incidental and asymmetrical letter-location binding effects when participants attended to letter features (but not when they attended to location features) that were associated with greater oscillatory activity over prefrontal and posterior regions during the retention period. We were interested to investigate whether the patterns of brain activity associated with the incidental binding of letters and locations observed when only the verbal feature is attended differ from those reflecting the binding resulting from the controlled/explicit processing of both verbal and spatial features. To achieve this, neural activity was recorded using magnetoencephalography (MEG) while participants performed two working memory tasks. Both tasks were identical in terms of their perceptual characteristics and only differed with respect to the task instructions. One of the tasks required participants to process both letters and locations. In the other, participants were instructed to memorize only the letters, regardless of their location. Time–frequency representation of MEG data based on the wavelet transform of the signals was calculated on a single trial basis during the maintenance period of both tasks. Critically, despite equivalent behavioural binding effects in both tasks, single and dual feature encoding relied on different neuroanatomical and neural oscillatory correlates. We propose that enhanced activation of an anterior–posterior dorsal network observed in the task requiring the processing of both features reflects the necessity for allocating greater resources to intentionally process verbal and spatial features in this task

    Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury.

    Get PDF
    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on functional connectivity patterns. Networks were calculated from resting-state magnetoencephalographic recordings from 15 brain injured patients and 14 healthy controls by means of wavelet coherence in standard frequency bands. We compared the parameters defining the network, such as number and strength of interactions as well as their topology, in controls and patients for two conditions: following a traumatic brain injury and after a rehabilitation treatment. A loss of delta- and theta-based connectivity and conversely an increase in alpha- and beta-band-based connectivity were found. Furthermore, connectivity parameters approached controls in all frequency bands, especially in slow-wave bands. A correlation between network reorganization and cognitive recovery was found: the reduction of delta-band-based connections and the increment of those based on alpha band correlated with Verbal Fluency scores, as well as Perceptual Organization and Working Memory Indexes, respectively. Additionally, changes in connectivity values based on theta and beta bands correlated with the Patient Competency Rating Scale. The current study provides new evidence of the neurophysiological mechanisms underlying neuronal plasticity processes after brain injury, and suggests that these changes are related with observed changes at the behavioural leve

    Oscillatory activity in prefrontal and posterior regions during implicit letter-location binding.

    Get PDF
    Many cognitive abilities involve the integration of information from different modalities, a process referred to as “binding.” It remains less clear, however, whether the creation of bound representations occurs in an involuntary manner, and whether the links between the constituent features of an object are symmetrical. We used magnetoencephalography to investigate whether oscillatory brain activity related to binding processes would be observed in conditions in which participants maintain one feature only (involuntary binding); and whether this activity varies as a function of the feature attended to by participants (binding asymmetry). Participants performed two probe recognition tasks that were identical in terms of their perceptual characteristics and only differed with respect to the instructions given (to memorize either consonants or locations). MEG data were reconstructed using a current source distribution estimation in the classical frequency bands. We observed implicit verbal–spatial binding only when participants successfully maintained the identity of consonants, which was associated with a selective increase in oscillatory activity over prefrontal regions in all frequency bands during the first half of the retention period and accompanied by increased activity in posterior brain regions. The increase in oscillatory activity in prefrontal areas was only observed during the verbal task, which suggests that this activity might be signaling neural processes specifically involved in cross-code binding. Current results are in agreement with proposals suggesting that the prefrontal cortex function as a “pointer” which indexes the features that belong together within an object

    Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis

    No full text
    Independent component analysis (ICA) has been proven useful for suppression of artifacts in EEG recordings. It involves separation of measured signals into statistically independent components or sources, followed by rejection of those deemed artificial. We show that a "leak" of cerebral activity of interest into components marked as artificial means that one is going to lost that activity. To overcome this problem we propose a novel wavelet enhanced ICA method (wICA) that applies a wavelet thresholding not to the observed raw EEG but to the demixed independent components as an intermediate step. It allows recovering the neural activity present in "artificial" components. Employing semi-simulated and real EEG recordings we quantify the distortions of the cerebral part of EEGs introduced by the ICA and wICA artifact suppressions in the time and frequency domains. In the context of studying cortical circuitry we also evaluate spectral and partial spectral coherences over ICA/wICA-corrected EEGs. Our results suggest that ICA may lead to an underestimation of the neural power spectrum and to an overestimation of the coherence between different cortical sites. wICA artifact suppression preserves both spectral (amplitude) and coherence (phase) characteristics of the underlying neural activity. (c) 2006 Elsevier B.V. All rights reserved

    Inferring the Dynamics of "Hidden" Neurons from Electrophysiological Recordings

    No full text
    Statistical analysis of electrophysiological recordings obtained under, e.g. tactile, stimulation frequently suggests participation in the network dynamics of experimentally unobserved "hidden" neurons. Such interneurons making synapses to experimentally recorded neurons may strongly alter their dynamical responses to the stimuli. We propose a mathematical method that formalizes this possibility and provides an algorithm for inferring on the presence and dynamics of hidden neurons based on fitting of the experimental data to spike trains generated by the network model. The model makes use of Integrate and Fire neurons "chemically" coupled through exponentially decaying synaptic currents. We test the method on simulated data and also provide an example of its application to the experimental recording from the Dorsal Column Nuclei neurons of the rat under tactile stimulation of a hind limb
    corecore